Instead of a battery, the new concept is a kind of fuel cell — which is similar to a battery but can be quickly refueled rather than recharged. In this case, the fuel is liquid sodium metal, an inexpensive and widely available commodity. The other side of the cell is just ordinary air, which serves as a source of oxygen atoms. In between, a layer of solid ceramic material serves as the electrolyte, allowing sodium ions to pass freely through, and a porous air-facing electrode helps the sodium to chemically react with oxygen and produce electricity.

In a series of experiments with a prototype device, the researchers demonstrated that this cell could carry more than three times as much energy per unit of weight as the lithium-ion batteries used in virtually all electric vehicles today.

A great deal of research has gone into developing lithium-air or sodium-air batteries over the last three decades, but it has been hard to make them fully rechargeable. “People have been aware of the energy density you could get with metal-air batteries for a very long time, and it’s been hugely attractive, but it’s just never been realized in practice,” Chiang says.

By using the same basic electrochemical concept, only making it a fuel cell instead of a battery, the researchers were able to get the advantages of the high energy density in a practical form. Unlike a battery, whose materials are assembled once and sealed in a container, with a fuel cell the energy-carrying materials go in and out.

The researchers envision that to use this system in an aircraft, fuel packs containing stacks of cells, like racks of food trays in a cafeteria, would be inserted into the fuel cells; the sodium metal inside these packs gets chemically transformed as it provides the power. A stream of its chemical byproduct is given off, and in the case of aircraft this would be emitted out the back, not unlike the exhaust from a jet engine.

But there’s a very big difference: There would be no carbon dioxide emissions. Instead the emissions, consisting of sodium oxide, would actually soak up carbon dioxide from the atmosphere. This compound would quickly combine with moisture in the air to make sodium hydroxide — a material commonly used as a drain cleaner — which readily combines with carbon dioxide to form a solid material, sodium carbonate, which in turn forms sodium bicarbonate, otherwise known as baking soda.

“There’s this natural cascade of reactions that happens when you start with sodium metal,” Chiang says. “It’s all spontaneous. We don’t have to do anything to make it happen, we just have to fly the airplane.”

As an added benefit, if the final product, the sodium bicarbonate, ends up in the ocean, it could help to de-acidify the water, countering another of the damaging effects of greenhouse gases.

Initially, the plan is to produce a brick-sized fuel cell that can deliver about 1,000 watt-hours of energy, enough to power a large drone, in order to prove the concept in a practical form that could be used for agriculture, for example. The team hopes to have such a demonstration ready within the next year

  • Björn Tantau
    link
    fedilink
    English
    202 days ago

    The trouble with hydrogen is that it is very hard to store. It’s a very small molecule that can easily slip through even the tiniest gaps. So you actually have to cool it down or put it under a lot of pressure. Usually the latter is favoured because it doesn’t require any energy to keep up. But it is more prone to breakage which can result in an explosion.

    I think Norway ditched their hydrogen plans after a gas station exploded. Not in a Hindenburg way, “just” from the pressure.